

- Portland Cement Association 16th Edition, Design and Control of Concrete Mixtures
- .
- .
- Pontaino Coment Association totic Ecolon, Design and Control of Concrete Microres ASTM Dialic Cement Mortas (Lising 2-An or 150-mm) Cuba Specimens), ASTM International, West Conshohocken, PA, 2016, www.astm.org ASTM C150 / C150M-H8, Standard Specification for Pontland Cement, ASTM International, West Conshohocken, PA, 2016, www.astm.org ASTM C151 / C151M-H8, Standard Specification for Pontland Cement, ASTM International, West Conshohocken, PA, 2018, www.astm.org ASTM C151 / C151M-H8, Standard Test Method for Autoclave Expansion of Hydraulic Cement, ASTM International, West Conshohocken, PA, 2018, www.astm.org ASTM C154 / Standard Test Method for Autoclave Cament Mortar, ASTM C154 / Standard Test Method for Autoclave Cament Mortar, ASTM C154 / T3, Standard Test Methods for Time of Setting of Hydraulic Cement Mortar, ASTM C154 / T3, Standard Test Methods for Interness of Hydraulic Cement by Vicat Needle, ASTM International, West Conshohocken, PA, 2013, www.astm.org ASTM C254 / T3, Standard Test Methods for Interness of Hydraulic Cement by Vicat Needle, ASTM International, West Conshohocken, PA, 2013, www.astm.org ASTM C254 / T3, Standard Test Methods for Interness of Hydraulic Cement by Vicat Needle, ASTM International, West Conshohocken, PA, 2013, www.astm.org ASTM C254 / T3, Standard Test Methods for Interness of Hydraulic Cement by Vicat Needle, ASTM International, West Conshohocken, PA, 2013, www.astm.org ASTM C254 / T3, Standard Test Methods for Interness of Hydraulic Cement by Vicat Needle, ASTM International, West Conshohocken, PA, 2013, www.astm.org .
- •
- Permeability Apparatus, ASTM International, West Conshohocken, PA, 2017, www.astm.org ASTM C595 / C595M-18, Standard Specification for Blended Hydraulic Cements, ASTM International, West Conshohocken, PA, 2018, www.astm.org ASTM C1157 / C1157M-17, Standard Performance Specification for Hydraulic Cement, ASTM International, West Conshohocken, PA, 2017, www.astm.org ASTM C1202-17a, Standard Test Method for Electrical Indication of Concrete's Ability to Resist Chloride Ion Penetration, ASTM International, West Conshohocken PA, 2017, www.astm.org . .

Agenda

Cement Chemistry, Specifications, and Testing

- Portland Cement Introduction and History
- Cement Plants and Manufacturing
- Cement Classifications and Chemistry
- Chemical and Physical Cement Testing
- Cement Specifications

Cement History

- 7000 BC oldest known concrete lime concrete (quicklime)
- 2500 BC cementing materials between stone blocks Great Pyramid at Giza •
- 120 AD- early Roman concrete advances to mix calcined lime-pozzolans from volcanic ash

Copyright @ JENSEN HU

Today's Available Cements

Wide range of portland, blended & other cements available:

- Sulfate-resisting cements
- Low-heat hydration cements
- Rapid strength gain cements
- ASR resistant cements
- Air entraining cements
- White cements
- Masonry cements
- Mortar cements
- Expansive cements
- Regulated-set cements
- Calcium aluminate cementsCalcium sulfoaluminate cements

What is portland cement?

Portland cement:

- A hydraulic cement produced by pulverizing clinker formed by heating a mixture, usually of limestone and clay to 1350 to 1450°C (2460 to 2640°F).
- Calcium sulfate is usually ground with clinker to control set.

Cement and Concrete Production

Cement and CO₂

Responsible for 5-7% of the worlds CO_2 production

For 1 m³ of concrete about 0.2 t of CO_2 are produced, mostly from the production of cement*

U.S. ~1.5% CO_2 production from cement

Copyright © JENSEN HIGHES A rights reserved rtner, E., "Industrially Interesting Approaches to "Low-CO₂" Cements," *Cement and Concrete Research*, 34 (9), September 2004, pp. 1489-

Agenda

Cement Chemistry, Specifications, and Testing

- Portland Cement Introduction and History
- Cement Plants and Manufacturing
- Cement Classifications and Chemistry
- Chemical and Physical Cement Testing
- Cement Specifications

Copyright © JENSEN HUGHES. All rights

Calcium	Iron	Silica	Alumina	Sulfate
Alkali waste Aragonite Calcite Cement-kiln dust Cement rock Chalk Clay Fuller's earth Limestone Marble Marl Seashells Shale Slag	Blast-furnace flue dust Clay Iron ore Mill scale Ore washings Pyrite cinders Shale	Calcium silicate Cement rock Clay Fly ash Fuller's earth Limestone Loess Mari Ore washings Quartzite Rice-hull ash Sand Sandstone Shale Slag Tranrock	Aluminum-ore refuse Bauxite Cement rock Clay Copper slag Fly ash Fuller's earth Granodiorite Limestone Loess Ore washings Shale Slag Staurolite	Anhydrite Calcium sulfate Gypsum

Quarry

Limestone is the primary raw material

Quarried near cement plant

Process of Clinker Production

- Temperatures between 1150-1200°C
- Particles become sticky
- Calcination is complete and temperature rises quickly
- Belite begins to form first

Process of Clinker Production

Temperatures between 1350-1450°C

- Nodules form with 25% liquid containing constinuents that from (C_3A and C_4AF)
- C₃S and C₂S remain in the solid phase

Process of Clinker Production

Cooling

- C₃A and C₄AF crystallize from the liquid phase
- Rate of cooling affects amount of C₃S and C₂S that form

Compound Composition

Chemical Name	Chemical Formula	Notation	Mass (%)
Tricalcium silicate	3CaO•SiO ₂	C ₃ S	50-70
Dicalcium silicate	2CaO• SiO ₂	C ₂ S	15-30
Tricalcium aluminate	3CaO•Al2O ₃	C3A	5-10
Tetracalcium aluminoferrite	$4CaO \bullet Al_2O_3 \bullet Fe_2O_3$	C_4AF	5-15
Calcium sulfate dihydrate	CaSO ₄ ,2H ₂ O	CSH ₂	~ 5

Composition

The relative quantities of each of these phases affects:

- setting time
- rate of strength development
- overall strength
- durability
- color

It is important, then, to know the composition of the cement.

Chemical Analysis: Determine Composition

X-Ray Fluorescence (XRF) Spectroscopy

- Provides bulk elemental composition of materials
- Results are used for Bogue calculations

X-ray Powder Diffraction (XRD)

- Rapid analytical technique used for phase identification of a crystalline material
- Rietveld refinement used to analyze results and provide more precise portland cement phases

Chemio	cal Analysis	
Oxide	Element	ASTM C 114 - Standard Test
SiO ₂	Silicon dioxide	Methods for Chemical Analysis
Al ₂ O ₃	Aluminum oxide	of Hydraulic Cement
Fe ₂ O ₃	Ferric oxide	
CaO	Calcium oxide	- Major Components
MgO	Magnesium oxide	
SO ₃	Sulfur trioxide	
LOI	Loss on ignition	
Na ₂ O	Sodium oxide	
K ₂ O	Potassium oxide	
TiO ₂	Titanium dioxide	
P ₂ O ₅	Phosphorus pentoxide	- Minor Components
ZnO	Zinc oxide	
Mn ₂ O ₃	Manganic oxide	
Sulfide sulfur		

Chemical Analysis

Oxide	%		<u>Oxide</u>	Shorthand	Common Name
SiO ₂	20.6		CaO	С	Lime
Al ₂ O ₃	5.07		SiO ₂	S	Silica
			Al ₂ O ₃	А	Alumina
Fe ₂ O ₃	2.90	90-95%	Fe ₂ O ₃	F	Ferric Oxide
CaO	63.9		MgO	м	Magnesia
MgO	1.53		K ₂ O	К	Alkalis
<u></u>	2.52		Na ₂ O	Na	7 11 10 10
SO ₃	2.53		SO₂	s	Sulfate
Na ₂ O	0.15			_	C
2			CO ₂	<u>c</u>	Carbonate
K ₂ O	0.73		H ₂ O	<u>H</u>	Water
LOI	1.58				

Compound Composition

Bogue Composition/Calculations

Alite (Tricalcium Silicate) $C_3S = 4.07C - 7.60S - 6.72A - 1.43F - 2.85S$

Belite (Dicalcium Silicate) $C_2S = 2.87S - 0.75C_3S$

Aluminate Phase (Tricalcium Aluminate) $C_3A = 2.65A - 1.69F$

Ferrite Compounds(Tetracalcium Aluminoferrite) $C_4AF = 3.04F$

Copyright © JENSEN HUGHES. All rights re

Compound Composition: Example Bogue Oxide **Calculated Phase Composition** SiO_2 20.6 $C_3S = 4.07(63.9) - 7.60(20.6) - 6.72(5.07)$ - 1.43(2.90) - 2.85(2.53) = **58.1** Al_2O_3 5.07 $C_2S = 2.87(20.6) - 0.75(58.1) = 15.6$ Fe₂O₃ 2.90 CaO 63.9 $C_3A = 2.65(5.07) - 1.69(2.90) = 8.5$ MgO 1.53 SO_3 2.53 Phase % $C_4AF = 3.04(8.8) = 8.8$ Na₂O 0.15 C₃S 58 16 C_2S K₂O 0.73 C_3A 9 LOI 1.58 C_4AF 9

Bogue Composition Assumptions

- All 4 phases are pure
- All the F present occurs as $C_4AF,$ and the quantities of A = 0.64(% F) and C = 1.40 (% F) are subtracted from the appropriate totals.
- The remaining Al_2O_3 is combined as C_3A and a further quantity of C = 1.65 (% Al_2O_3) is subtracted from the total remaining CaO.
- The SiO₂ combines initially with CaO to form C₂S giving a provisional C₂S figure. The CaO combining with SiO₂ = 2.87%(SiO₂) is subtracted from the total CaO figure, and the remaining CaO is then combined with a part of the C₂S = 4.07(%CaO) to form C₃S.

As a result, Bogue compositions may be "off" by as much as 10% compared to XRD-determined compositions.

Portland Cement: Chemical Requirements Cement Type T Ш ш IV v Aluminum oxide (Al₂O₃), max, % and Ferric oxide (Fe₂O₃), max, % 6.5 6.0 osition 6.0 Magnesium oxide (MgO), max, % 6.0 6.0 6.0 6.0 Sulfur trioxide (SO₃),D max, % Analysis When (C₃A)E is 8 % 3.0 2.3 2.3 3.0 3.5 - 5 When (C₃A)E is more than 8 % 3.5 N/A 4.5 N/A N/A Loss on ignition, max, % When limestone is not an ingredient 3.0 3.0 2.5 3.0 3.0 Chen When limestone is an ingredient 3.5 3.5 3.5 3.5 3.5 Insoluble residue, max, % 1.5 1.5 Tricalcium silicate (C₃S), max, % 35 Calculations Ferric oxide (Fe₂O₃), max, % 40 Fricalcium aluminate (C₃A), max, % 8 15 5 7 Sum of C₃S + 4.75C₃A, max, % Fetracalcium aluminoferrite plus twice the Bogue tricalcium aluminate (C4AF + 2(C3A)), or solid solution (C₄AF + C₂F), as 25 applicable, max, %

Compound Composition: Example Equivalent Alkalis Oxide % Sodium equivalent, Na2Oe SiO2 20.6 Na2Oe = Na2O + (0.658 x K2O) Al2O3 5.07 Na2Oe = 0.15 + (0.658 x 0.73) Fe2O3 2.90 Na2Oe = 0.15 + (0.658 x 0.73) GaO 63.9 Na2Oe = 0.63%

Agenda

 SO_3

Na₂O

 K_2O

LOI

2.53

0.15

0.73

1.58

Cement Chemistry, Specifications, and Testing

- Portland Cement Introduction and History
- Cement Plants and Manufacturing
- Cement Classifications and Chemistry
- Chemical and Physical Cement Testing
- Cement Specifications

Portland Cement

By definition:

 a hydraulic cement produced by pulverizing clinker consisting essentially of hydraulic calcium silicates, usually containing one or more of the forms of calcium sulfate as an interground addition.

Copyright © JENSEN HUGHES. All rights

Types of Portland Cement

ASTM C150 (AASHTO M 85)

- I Normal
- II Moderate sulfate resistance
- III High early strength
- IV Low heat of hydration
- V High sulfate resistance

Copyright © JENSEN HUGHES. All rights

	Type III - High Early Strength Cements
THE REAL PROPERTY OF	

Blended Hydraulic Cement (ASTM C 595)

General:

 a hydraulic cement consisting of two or more inorganic constituents, which contribute to the strength gaining properties of cement.

Blended Cements

Clinker Gypsum Portland cement Fly ash Slag Silica Fume Calcined Clay

lended Hydraulic	Cements	
ASTM C 595		
Type IS	Portland blast-furnace slag cement	
Type IP	Portland-pozzolan cement	
Type IL	Portland-limestone cement	
Туре ІТ	Ternary blended cement	

ASTM C1157 - Hydraulic Cements

General:

- First performance specification for hydraulic cements
- Cements meet physical performance test requirements rather than prescriptive restrictions on ingredients or cement chemistry as in other cement specifications.

Copyright © JENSEN HUGHES. All rights

Provides for six types

Hydraulic Cement

ASTM C 1157

Type GU	General use
Type HE	High early strength
Type MS	Moderate sulfate resistance
Type HS	High sulfate resistance
Туре МН	Moderate heat of hydration
Type LH	Low heat of hydration

		Cement Applications					
Cement specification	General purpose	Moderate heat of hydration	High early strength	Low heat of hydration	Moderate sulfate resistance	High sulfate resistance	Resistance to alkali-silica reactivity (ASR)
ASTM C 150 (AASHTO M 85) portland cements	I	II (moderate heat option)	ш	IV	п	v	Low alkali option
ASTM C 595 (AASHTO M 240) blended hydraulic cements	IS IP I(PM) I(SM) S, P	IS(MH) IP(MH) I(PM)(MH) I(SM)(MH)		P(LH)	IS(MS) IP(MS) P(MS) I(PM)(MS) I(SM)(MS)		Low reactivity option
ASTM C 1157 hydraulic cements	GU	МН	HE	LH	MS	HS	Option R

Type of portland cement	Poter	itial compo	und compos	ition,%	Plaine		
	C ₃ S	C ₂ S	C ₃ A	C ₄ AF	fineness m²/kg		
l (mean)	54	18	10	8	369		
ll (mean)	55	19	6	11	377		
III (mean)	55	17	9	8	548		
IV (mean)	42	32	4	15	340		
V (mean)	54	22	4	13	373		
White (mean)	63	18	10	1	482		

Chemical Compounds of Portland Cement

Polished thin-section examination of portland cement clinker shows

- Alite (C₃S), Light angular crystals
 Belite (C₂S), Darker rounded crystals

Portland Ce	ment Compound Hyd	Iration Reaction	s (Oxide Notation)
2 (3CaO·SiO ₂) Tricalcium silicate	+ 11 H ₂ 0 Water	= 3Ca0·2Si0 ₂ ·8H ₂ 0 Calcium silicate hydrate (C-S-H)	+ 3 (Ca0·H ₂ 0) Calcium hydroxide
2 (2CaO•SiO ₂) Dicalcium silicate	+ 9 H ₂ 0 Water	= 3Ca0+2Si0 ₂ +8H ₂ 0 Calcium silicate hydrate (C-S-H)	+ CaO·H ₂ O Calcium hydroxide
3Ca0•Al ₂ 0 ₃ Tricalcium aluminate	+ 3 (CaO·SO ₃ ·2H ₂ O) Gypsum	+ 26 H ₂ 0 Water	= 6Ca0·Al ₂ 0 ₃ ·3S0 ₃ ·32H ₂ 0 Ettringite
2 (3Ca0•Al ₂ 0 ₃) Tricalcium aluminate	+ 6Ca0·Al ₂ 0 ₃ ·3SO ₃ ·32H ₂ 0 Ettringite	+ 4 H ₂ 0 Water	= 3 (4Ca0·Al ₂ 0 ₃ ·SO ₃ ·12H ₂ 0) Calcium monosulfoaluminate
3Ca0-Al ₂ O ₃ Tricalcium aluminate	+ CaO•H ₂ O Calcium hydroxide	+ 12 H ₂ 0 Water	= 4Ca0+Al ₂ O ₃ +13H ₂ O Tetracalcium aluminate hydrate
4CaO• Al ₂ O ₃ •Fe ₂ O ₃ Tetracalcium aluminoferrite	+ 10 H ₂ 0 Water	+ 2 (Ca0+H ₂ 0) Calcium hydroxide	= 6Ca0·Al ₂ 0 ₃ ·Fe ₂ 0 ₃ ·12H ₂ 0 Calcium aluminoferrite hydrate

Type of portland cement	Poten	tial compo	und compos	ition,%	Plaina		
	C ₃ S	C ₂ S	C ₃ A	C₄AF	fineness m²/kg		
l (mean)	54	18	10	8	369		
ll (mean)	55	19	6	11	377		
III (mean)	55	17	9	8	548		
IV (mean)	42	32	4	15	340		
V (mean)	54	22	4	13	373		
White (mean)	63	18	10	1	482		

Comparison: British Standards Institution

BS EN 197-1:2011

Part 1: Composition, specifications and conformity criteria for common cements

Separates into:

- 5 main cement types
- 27 Common Cements
- 7 Sulfate Resisting Cements
 3 Low Early Strength blast furnace cements
 - · 2 sulfate resisting low early strength blast furnace cements
- Definition of each cement includes:
- Proportions
- 9 Strength Classes
- Mechanical, Physical, and Chemical Requirements

Common Cements (5 Main Types)

Composition:

- CEM I Portland Cement Minor Constituents (0-5%)
- CEM II Portland-composite cement Slag cement, Silica Fume, Fly Ash, Pozzolans
- CEM III Blast furnace cement Slag cement
- CEM IV Pozzolanic cement
- Pozzolans
- CEM V Composite cement Slag cement and pozzolans (ternary blends)

		e by mass ^a)	on (percentage	Compositi				
1			stituents	Main con		products	seven	Main
	Minor additional constituents	Pozzolana Siliceous fly natural ash		Blast furnace slag	Clinker	e resisting common ment)	types	
		v	Р	s	к			
Portland Cemer Clinker with Limited C ₃ /	0 – 5				95 - 100	CEM I-SR 0 CEM I-SR 3 CEM I-SR 5	Sulfate resisting Portland cement	CEMI
Portland Ceme	0-5	2	122	66 - 60	20 - 34	CEM IIVB-SR	Sultate	
Slag Cement	0-5	÷	121	81 - 95	5 - 19	CEM INC-SR	blast fumace cement	CEM III
Portland Ceme Clinker +	0-5	-35-=	- 21	1	65-79	CEM IVIA-SR	Sulfate®	0534
Nat. Pozz. Or Class F Fly As	0-5	-55-=>	- 36		45 - 64	CEM IV/B-SR	pozzolanic cement	IV

- CEM III No requirement for C₃A content on clinker
- CEM IV C₃A limited below 9%

Mechanical and Physical Requirements

		Compressi M	Initial	Sound- ness (expan- sion)		
Strength class	Early strength		Standard			Standard strength
	2 days	7 days	28 days		min	mm
32,5 L*		≥ 12,0				
32,5 N		≥ 16,0	≥ 32.5	≤ 52.5	≥75	
32,5 R	≥ 10,0					
42,5 L*		≥16,0	>425			
42,5 N	≥ 10,0	5		> 42.5	< 62.5	> 60
42,5 R	≥ 20,0					
52,5 L*	≥ 10,0	-				
52,5 N	≥ 20,0	÷	≥ 52.5		≥45	
52,5 R	≥ 30,0				- 30	

- Three classes of standard strength (@ 28days): 32.5, 42.5, 52.5
- Three classes of early strength: N Normal, L Low, R High

· Class L is only applicable to CEM III cements

1	2	3	4	5
Property	Test reference	Cement type	Strength class	Requirements*
oss on ignition	EN 198-2	CEM I CEM III	All	≤ 5,0 %
nsoluble residue	EN 196-2 ^b	CEM I CEM III	All	≤ 5,0 %
		CEM I	32.5 N 32.5 R 42.5 N	≤ 3,5 %
Sulfate content (as SO ₅)	EN 198-2	CEM IV CEM V	42,5 R 52,5 N 52,5 R	<4.0 %
		CEM III ^d	All	1
Chloride content	EN 198-2	al *	Al	≲0,10 %/
Pozzolanicity	EN 198-5	CEM IV	All	Satisfies the test
Requirements are g Determination of re Cement types CEM trength classes. Cement type CEM Cement type CEM cement type CEM	given as percentage by i sidule insoluble in hydro il IIIB-T and CEM IIIB-M IIIC may contain up to 4 III may contain more th ing and/or the delivery r	mass of the final cemer chloric acid and sodium with a T content > 20 4,5 % suifate. Ian 0,10 % chloride bu lobe.	t. carbonate. % may contain up to 4.9 t in that case the maxim	5 % suitate (as SO ₂) for all num chioride content shall

Agenda

Cement Chemistry, Specifications, and Testing

- Portland Cement Introduction and History
- Cement Plants and Manufacturing
- · Cement Classifications and Chemistry
- Chemical and Physical Cement Testing
- Cement Specifications

Cement Testing – Standard Requirements

Cement Fineness and Particle Size

- ASTM C204 Blaine Surface Area
- ASTM C115 Turbidimeter
- ASTM C430 No. 325 Sieve (45 µm Sieve)
- Particle Size Distribution (PSD)
- Heat of Hydration
- ASTM C186 Heat of Hydration
- ASTM C1702 Isothermal Calorimetry

Loss on Ignition

Density of Cement

Thermal Analysis of Cement

-	ineness						
	Requirements for Type I, II, IV 8	V					
	 (No requirements for Type III) 						
	<u>Air l</u>	Permeability					
	Minimum, m ² /kg 2	60					
	Maximum, m ² /kg 4	30 (Type IV Only)					
	Typical Values, m ² /kg 3	50-380 Type I					
	4	50-600 Type III					
	No limits for blended cement (ASTM C 595), hydraulic cements (ASTM C 1157), or slag cement (ASTM C989) but values must be reported						
		Copyright © JENSEN HUGHES, All rights reserved.					

What is Isothermal Calorimeter?

Temperature around a paste or mortar sample is maintained constant to simulate different curing temperatures and allow for unbiased comparisons of cements.

Calorimetry measures the heat generated. Provides information on:

- Setting Time,
- Hydration Rates,
- Admixture Interactions, and
- Compressive Strength.

Cement Testing – Physical Requirements

Paste Testing

- Normal Consistency (ASTM C187)
- Vicat Time of Setting (ASTM C191)
- Soundness Test (ASTM C151)

Summary of Test Method

Initial time of set is the time elapsed between the initial contact of cement and water and the time when the penetration is measured to be <u>25 mm</u>

Final time of set is the time elapsed between the initial contact of cement and water and the time when the needle does not leave a complete circular impression in the paste surface

Copyright © JENSEN HUGHES. All right

Setting Time Requirements by Specification

ASTM C150 - Portland Cement Specification

- Initial Set = not less than 45 min. and not more than 375 min.
- ASTM C595 Blended Cement Specification
- Initial Set = not less than 45 min. and not more than 7 hrs.

ASTM C1157 – Hydraulic Cement Specification (Performance Specification)

• Initial Set = not less than 45 min. and not more than 7 hrs.

Soundness Test

ASTM C 151 -Standard Test Method for Autoclave Expansion of Hydraulic Cement

ASTM C151 – Soundness Testing

Determination of the <u>expansion</u> of a <u>hardened</u> <u>cement paste</u> when exposed to the <u>autoclave</u> <u>conditions</u> in this method.

The autoclave expansion test provides an <u>index</u> of <u>potential delayed expansion</u> caused by the hydration of <u>CaO</u> or <u>MgO</u>, or both, when present in hydraulic cement.

What are we testing for....?

Expansion reactions primarily associated with autoclave expansion:

 $\begin{array}{c} MgO \rightarrow Mg(OH)_2 \\ Periclase \rightarrow Brucite \end{array}$

 $CaO \rightarrow Ca(OH)_2$ fCaO \rightarrow Portlandite

 Portlandite also forms from C₃S and C₂S reactions and is consumed with carbonation (forming CaCO₃)

Apparatus: Autoclave

Autoclave - a high-pressure steam vessel capable of:

- Raising Generating Steam and Pressure to 2 MPa [295 psi] in 45 to 75 min,
- Maintain the 2 ± 0.07 MPa [295 ± 10 psi] pressure for 3 h, and
- Lowering the pressure below 0.07 MPa [10 psi] at the end of 11/2 h.

Soundness Requirements by Specification

ASTM C150 - Portland Cement Specification

• I, II, III, IV, and V: Max. Expansion, 0.80% ASTM C595 – Blended Cement Specification

 "The specimens shall remain firm and hard and show no signs of distortion, cracking, checking, pitting, or disintegration when subjected to the autoclave expansion test."

Copyright © JENSEN HUGHES. All rights

- Max. Expansion, 0.80%
- Max. Contraction, 0.20%

ASTM C1157 – Hydraulic Cement Specification (Performance Specification)

Max. Expansion, 0.80%

Cement Testing – Physical Requirements

Paste Testing

- Normal Consistency (ASTM C187)
- Vicat Time of Setting (ASTM C191)
- Soundness Test (ASTM C151)
- Mortar Testing
- Consistency of Mortar (ASTM C1437)
- Compressive Strength (ASTM C109)
- Air Content (ASTM C185)
- Sulfate Expansion (ASTM C1038)
 Sulfate Resistance (ASTM C1012)

<text><text><text><text><text>

Procedure: Molding Test Specimens

1. Place 25 mm Layer

2. Tamp 32 Times.

3. Fill Mold, Tamp as Specified, and Bring in Forced out Mortar.

Procedure: Molding Test Specimens

4. Draw Flat Side Trowel at Right Angle to Length of Mold.

5. Draw Flat Side of Trowel Lightly Down Length of Mold.

6. Cut off Mortar By Drawing Trowel with A Sawing Motion.

Procedure: Mass per 400 mL of Mortar

3. Tap the Sides of the Measure at Five **Different Points.**

+ **P**)

Procedure: Mass per 400 mL of Mortar

4. Cut off Mortar Plane with Sawing Motion with Straightedge or Trowel.

- 5. Wipe off Adhered Mortar and Water to Outside of Mold.
- 6. Determine Mass of Measure and Constituents.

Calculation: Air Content

- · Calculate the air content of the mortar, expressed as
- ▶ When,
 - Portland Cement SG = 3.15
 - · 20-30 Standard Sand SG = 2.65

Air Content, volume
$$\% = 100 - W \left[\frac{(182.7 + P)}{(2000 + 4P)} \right]$$

Air Content Requirements by Specification

ASTM C150 - Portland Cement Specification

- "Compliance with the requirements of this specification does not necessarily ensure that the desired air
- content will be obtained in concrete."
 I, II, III, IV, and V: Max. Air Content, 12%
 IA, IIA, and IIIA: Max. Air Content, 22%, Min. Air
- Content 16% ASTM C595 - Blended Cement Specification
- Max. Air Content, 12%

ASTM C1157 - Hydraulic Cement Specification (Performance Specification)

- · "Air content shall be reported on all certificates of test results requested from the manufacturer.
- No Limit

Designation: C1538C1538F - 16s	
	ASTM C1038 - Standard Test Metho for Expansion of Hydraulic Cement Mortar Bars Stored in Water

Purpose

Determine the amount of *expansion* of a *mortar bar* when it is stored in *water*.

The amount of mortar-bar expansion may <u>relate</u> to the amount of <u>sulfate</u> in the <u>cement</u>, <u>expansion</u> may become <u>excessive</u> when the cement contains too much <u>sulfate</u>.

Procedure: Mixing and Molding

Provided in ASTM

C1038.

1. Mix Cement Mortar per ASTM C305. Proportions are

2. Determine Water Content per ASTM C1437

Procedure: Curing and Testing

4. Moist Cure Specimen(s) for 22 ± 0.5 hr per ASTM C511.

5. Then at 23.0 ± 2.0°C [73.5 ± 3.5°F] for at least 30 min prior to making the initial measurement.

6. Store in Lime-Saturated Water until Age of 14 Days and Measure Length Change

ASTM C150 – Portland Cement Specification Only Required if SO₃ greater than chemical requirements Expansion < 0.020% at 14 days ASTM C595 – Blended Cement Specification Only Required if SO₃ greater than chemical requirements Expansion < 0.020% at 14 days ASTM C1157 – Hydraulic Cement Specification

Sulfate Expansion Requirements by Specification

ASTM C1157 – Hydraulic Cement Specification (Performance Specification)

<u>Required Testing</u>

Expansion < 0.020% at 14 days

Sulfate Resistance (External Sulfates)

ASTM C1012 -Standard Test Method for Length Change of Hydraulic-Cement Mortars Exposed to a Sulfate Solution

Copyright © JENSEN HUGHES. All righ

Scope

This test method provides a means of assessing the *sulfate resistance* of *mortars* made using portland cement, blends of portland cement with pozzolans or slags, and <u>blended hydraulic cements</u>.

The standard exposure solution used in this test method, unless otherwise directed, contains 352 moles of Na_2SO_4 per m³ (50 g/L).

Other sulfate concentrations or other sulfates such as $MgSO_4$ may be used to simulate the environmental exposure of interest.

syright © JENSEN HUGHES. All rights reserved.

Procedure: Mixing and Molding

2. Mold Six Mortar Bars and Up To 21 Cubes for A Compressive Strength.

3. Cure the specimens at 35 ± 3°C (95 ± 5°F) for 23 1/2 h ± 30 min. At 23 1/2 ± 6 30 min, remove molds from container and demold the specimens

Procedure: Curing and Testing

4. After demolding, if the mean strength of the two cubes is 20 MPa [2850 psi] or more, observe and record comparator readings of mortar bars and place all the bars in the sulfate solution.

If 20 MPa [2850 psi] is not achieved, store the demolded cubes and mortar bars in the curing tank and test additional cubes

Procedure: Molding Test Specimens

Mold.

4. Draw Flat Side Trowel at Right Angle to Length of

Mold.

6. Cut off Mortar By Drawing Trowel with A Sawing Motion.

Agenda

Cement Chemistry, Specifications, and Testing

- Portland Cement Introduction and History
- Cement Plants and Manufacturing
- · Cement Classifications and Chemistry
- Chemical and Physical Cement Testing
- <u>Cement Specifications</u>

Review: Cement Tests and Specifications

Cement Paste Testing

- Normal Consistency (ASTM C187)
- Vicat Time of Setting (ASTM C191)
- Soundness Test (ASTM C151)
- Mortar Testing
- Consistency of Mortar (ASTM C1437)
- Compressive Strength (ASTM C109)
 Air Content (ASTM C185)

- Sulfate Expansion (ASTM C1038)
 Sulfate Resistance (ASTM C1012)
- Cement Specifications
- ASTM C150 Portland Cement
- ASTM C595 Blended Cement Specification
- ASTM C1157 Hydraulic Cement Specification (Performance Specification)

Portland Cement

ASTM C150 - Standard Specification for Portland Cement

Prescriptive and Performance-based Specification (Hybrid)

Prescriptive-based Specification: have limits on chemical composition, some physical properties, and restrictions on ingredients

Performance-based Specification: have requirements for setting time, strength, and durability

HES, All righ

Copyright © JENSEN HUGHES. All rights

Portland Cement Types (ASTM C150)

Type I – Normal

· General-purpose portland cement Type II - Moderate Sulfate Resistance

 Used where protection from sulfate is required for structures exposed to soil or ground water

Severity of potential exposure	Water-soluble sulfate (SO ₄) in soil, % by mass	Sulfate (SO4)" in water, ppm	wlow by mass, max. ¹²	Cementitious material requirements
Class 0 exposure	0.00 to 0.10	0 to 150	No special requirements for sulfate resistance	No special requirements for sulfate resistance
Class 1 exposure	> 0.10 and < 0.20	> 150 and < 1500	0.501	C150 Type II or equivalent ⁸
Class 2 exposure	0.20 to < 2.0	1500 to < 10,000	0.451	C150 Type V or equivalent ⁸
Class 3 exposure	2.0 or greater	10,000 or greater	0.40 [‡]	C150 Type V plus pozzolan or slag ¹

Portland Cement Types (ASTM C150)

Type III - High early strength

- · Chemically similar to Type I, but ground finer
- Used in precast construction
- Type IV Low heat of hydration
- Mass concrete structures
- Not commonly manufactured in North America Type V – High Sulfate resistance

ASTM C150 Requirements

Chemical Requirements	Physical Requirements	
Chemical analysis	Fineness	
Compound composition	Soundness	
Chemical limits	Normal Consistency)	
	Setting Time	
	Compressive strength	
	Heat of hydration	
	Loss on ignition	
	Density	
	Air content	
	Sulfate expansion	

Portland Cement: Prescriptive Requirements

Ingredients

- Portland Cement Clinker
- Calcium Sulfate
- Limestone (less than 5%)
- Inorganic Processing Additions (less than 5%)
- Organic Processing Additions (less than 1%)
- Air-entraining addition

Portland Cement: Chemical Requirements

Cement Type	I.	П	111	IV	v	
Aluminum oxide (Al ₂ O ₃), max, %		6.0				-
Ferric oxide (Fe ₂ O ₃), max, %		6.0		6.5		a
Magnesium oxide (MgO), max, %	6.0	6.0	6.0	6.0	6.0	<u>.</u>
Sulfur trioxide (SO ₃),D max, %						is is
When (C ₃ A)E is 8 %	3.0	3.0	3.5	2.3	2.3	Lĕ ₹
When (C ₃ A)E is more than 8 %	3.5	N/A	4.5	N/A	N/A	L S S
Loss on ignition, max, %						8
When limestone is not an ingredient	3.0	3.0	3.0	2.5	3.0	, ž
When limestone is an ingredient	3.5	3.5	3.5	3.5	3.5	l s
Insoluble residue, max, %	1.5	1.5	1.5	1.5	1.5	_
Tricalcium silicate (C ₃ S), max, %				35		<u>ه</u> ا
Ferric oxide (Fe ₂ O ₃), max, %				40		l ë
Tricalcium aluminate (C ₂ A), max, %		8	15	7	5	lat
Sum of C ₃ S + 4.75C ₂ A, max, %						Lĕ
Tetracalcium aluminoferrite plus twice the						ت]
tricalcium aluminate (C ₄ AF + 2(C ₃ A)),						l ng
or solid solution (C ₄ AF + C ₂ F), as					25	
applicable, max, %						

Portland Cement: Physical Requirements

Cem ent Type	I	Ш	ш	IV	v	
Air content of mortar, volume %						
max	12	12	12	12	12	
Fineness, Specific Surface, m ² /kg						
Air permeability test						
min.	260	260		260	260	
max.				430		
Autoclave expansion, max. %	0.8	0.8	0.8	0.8	0.8	
Compressive Strength, MPA (psi)						
1 day			12			
			[1740]			
3 days	12	10	24		8	
	[1740]	[1450]	[3480]		[1160]	
7 days	19	17		7	15	
	[2760]	[2470]		[1020]	[2180]	
28 days				17	21	
				[2470]	[3050]	
Time of setting; Vicat test:						
Time of Setting, min. (not less than	45	45	45	45	45	
Time of Setting, min. (not more that	375	375	375	375	375	

Blended Hydraulic Cements

ASTM C595 - Standard Specification for Blended Hydraulic Cements

Prescriptive and Performance-based Specification
 (Hybrid)

Applies to:

 blended hydraulic cements for both general and special applications, using slag, pozzolan, limestone, or some combination of these, with portland cement or portland cement clinker or slag with lime.

Copyright © JENSEN HUGHES. All rights

Classification

Type IS—Portland blast-furnace slag cement.

Copyright © JENSEN HUGHES. All rights

- Type IP-Portland-pozzolan cement.
- Type IL—Portland-limestone cement.
- Type IT—Ternary blended cement.

Blended Cements: Chemical Requirements

Prescriptive Limits

· Based-on Chemical Analysis

Cement Type	IS(<70), IT(P <s<70), IT(L<s<70)< th=""><th>IS(≥70), IT(S≥70)</th><th>IP, IT(P≥S), IT(P≥L)</th><th>IL, IT(L≥S), IT(L≥P)</th></s<70)<></s<70), 	IS(≥70), IT(S≥70)	IP, IT(P≥S), IT(P≥L)	IL, IT(L≥S), IT(L≥P)
Magnesium oxide (MgO), max, %			6.0	
Sulfate reported as SO ₃ , max, %	3.0	4.0	4.0	3.0
Sulfide reported as S ² , max, %	2.0	2.0		
Insoluble residue, max, %	1.0	1.0		
Loss on ignition, max, %	3.0	4.0	5.0	10.0

Blended Cement: Physical Requirements

Cement Type	IL, IP, IS(<70), IT(S<70)	IS(≥70), IT(S≥70)
Fineness, Specific Surface, m ² /kg	Note A	Note A
Autoclave expansion, max. %	0.8	0.8
Autoclave Contraction, max. %	0.2	0.2
Time of setting; Vicat test:		
Time of Setting, min. (not less than)	45	45
Time of Setting, hrs. (not more than)	7	7
Air content of mortar, volume %, max	12	12
Compressive Strength, MPA (psi)		
3 days	13	
	[1890]	
7 days	20	5
	[2900]	[720]
28 days	25	11
	[3620]	[1600]

Hydraulic Cement Specification (Performance Specification)

ASTM C1157 - Standard Performance Specification for Hydraulic Cement

Performance-based Specification (ONLY)

Applies to:

 covers hydraulic cements for both general and special applications. There are <u>no restrictions on</u> <u>the composition of the cement or its</u> <u>constituents</u>

Classification and Use

Type GU—Hydraulic cement for general construction. Special types:

Copyright © JENSEN HUGHES. All rights

- Type HE—High Early-Strength.
- Type MS—Moderate Sulfate Resistance.
- Type HS—High Sulfate Resistance.
- Type MH—Moderate Heat of Hydration.
- Type LH—Low Heat of Hydration.

Hydraulic Cement: Physical Requirements

Cement Type	GU	HE	MS	HS	MH	LH
Fineness, Specific Surface, m ² /kg	Note A	Note A				
Autoclave Length Change, max. %	0.8	0.8	0.8	0.8	0.8	0.8
Time of setting; Vicat test:						
Time of Setting, min. (not less than)	45	45	45	45	45	45
Time of Setting, min. (not more than)	420	420	420	420	420	420
Air content of mortar, volume %, max	12	12	12	12	12	12
Compressive Strength, MPA (psi)						
1 day		12				
-		[1740]				
3 days	13	24	11	11	5	
-	[1890]	[3480]	[1600]	[1600]	[1725]	
7 days	20		18	18	11	11
-	[2900]		[2610]	[2610]	[1600]	[1600]
28 days	28			25		21
· · · · · · · · · · · · · · · · · · ·	[4060]			[3620]		[3050]
Heat of Hydration						
7 Days, max, kJ/kg [kcal/kg]					290 [70]	
28 Days, max, kJ/kg [kcal/kg]						
Mortar bar Expansion						
14 Days, % max	0.020	0.020	0.020	0.020	0.020	0.020
Sulfate expansion (Sulfate Resistance)						
6 Months, max, %			0.10	0.05		
1 year, max, %				0.10		

ASTM Cement Standards Summary

ASTM C150 - Portland Cement

5 Types of Cements

 Prescriptive and Performance Based Specification ASTM C595 – Blended Portland Cements

• 4 Types of Blended Cements

Prescriptive and Performance Based Specification
 ASTM C1157 – Hydraulic Cements (Performance
 Specification)

- 5 Types of Cements Determined by Cement Applications
- Performance Based Specification

Agenda

Cement Chemistry, Specifications, and Testing

- Portland Cement Introduction and History
- Cement Plants and Manufacturing
- Cement Classifications and Chemistry
- Chemical and Physical Cement Testing
- Cement Specifications

Copyright © JENSEN HUGHES. All rights re

